
Use and environmental impact of antifouling paints in the Baltic Sea

Maria Bighiu

Båtmiljöseminarium, Göteborg 20.04.2017

Thesis overview and aims

Paper 1

XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

Ytreberg E., Lundgren L., Bighiu M. Eklund B.

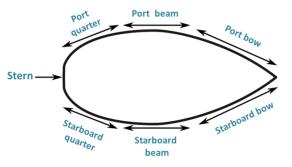
Environmental Pollution (2016)

Paper 2

Biofouling of leisure boats as a source of metal pollution

Bighiu M., Eriksson-Wiklund A.K., Eklund B.

Environmental Science and Pollution Research (2016)

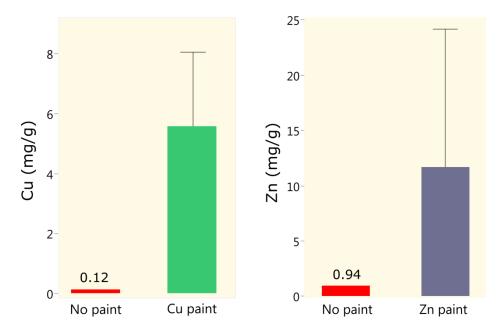

Aims:

1. To quantify metal concentrations in biofouling;

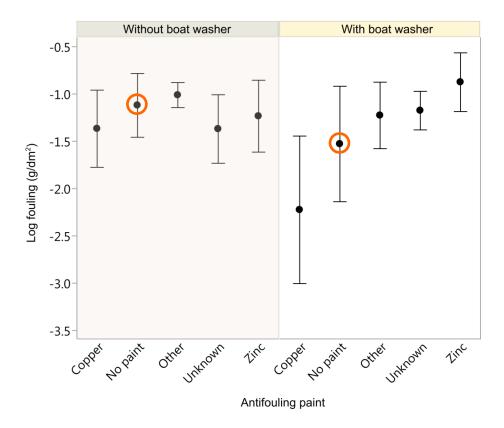
2. To evaluate the importance of several factors for biofouling (i.e. type of paint, mechanical cleaning, hull colour, etc).

Methods:

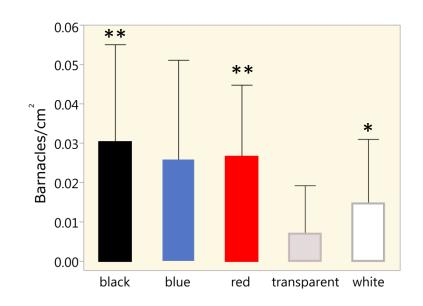
- Collection of biofouling from boats
- Survey for boat owners
- Substratum colour experiment


Very high concentrations of metals in the biofouling

 \rightarrow Correlated to the metal concentrations on boat hulls (XRF)


Metals in biofouling (mg/g)

	Cu	Zn	Sn				
Median	3.5	6.3	0.01				
LSL	0.2	0.5	NA				
\checkmark							


Exceed LSL by a factor of 18 for Cu and 13 for Zn

No effect of AF paint

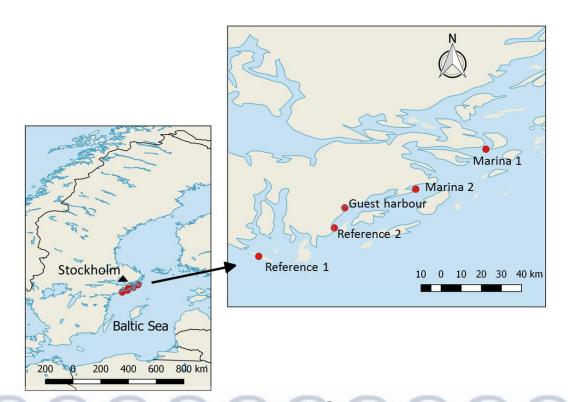
Effect of hull colour

Paper 3

Metal contamination in harbours impacts life-history traits and metallothionein levels in snails

Bighiu M., Gorokhova E., Carney Almroth B., Eriksson-Wiklund A.K.

(under review)


Aims:

1. To investigate the effect of long-term exposure in harbours on snail growth, reproduction, survival and metallothionein (MT).

2. To evaluate the importance of abiotic factors (Cu, Zn, nutrients, pH, salinity) for the observed effects.

Experimental setup

Cages at 1 m depth 2014 (8 weeks) 2015 (16 weeks)

Theodoxus fluviatilis

Reduced fitness in harbours

Mortality Growth 0.002-0.005 Relative growth rate (mg d⁻¹) Mortality rate (indiv. d^{-1}) 0.004 0.001 0.003 0 0.002 0.001 -0.001 Т Т 0.000 Mainal Marinaz Matina2 Matinal Reference 2 Reference 1 Guest harbout Reference 2 Reference 1 Guest habout **Increasing Cu levels** Year 2014 2015

Reduced fecundity in harbours

500 0.06 Fecundity rate (eggs mg⁻¹ d⁻¹) 400 0.05 MT (µg/g ww) 300 0.04 0.03 200 0.02 100 0.01 0 Guest harbour Reference2 Reference1 Maima2 Mainal 0.00 Guest harbour Reference2 Matina Reference1 Mainal Year 2014

Fecundity

2015

Metallothionein

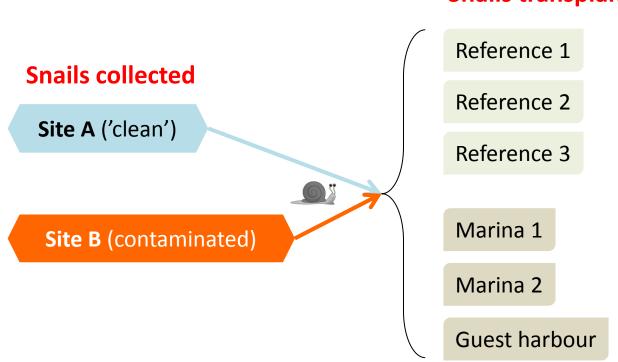
12

Metals are key explanatory factors

		Fecundity rate	Growth rate	MT	Mortality rate
water	Cu	-			+
	Zn		-	-	
	Cu:Zn				
sediment	Cu _{sed}				+
	Zn _{sed}				
	Cu _{sed} :Zn _{sed}	+	+	+	
	Total Phosphorous				
	Total Nitrogen				
	Salinity			-	
	рН				
	Body size		-		

Paper 4

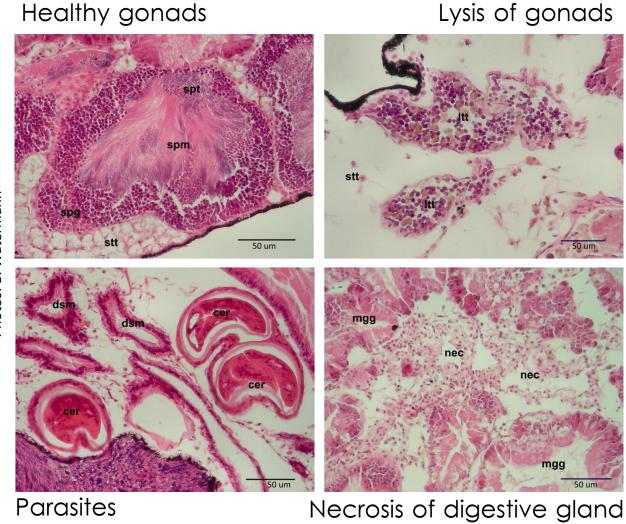
Mortality and histopathological effects in harbour-transplanted snails with different exposure histories


Bighiu M., Watermann B., Guo X., Carney Almroth B., Eriksson-Wiklund A.K.

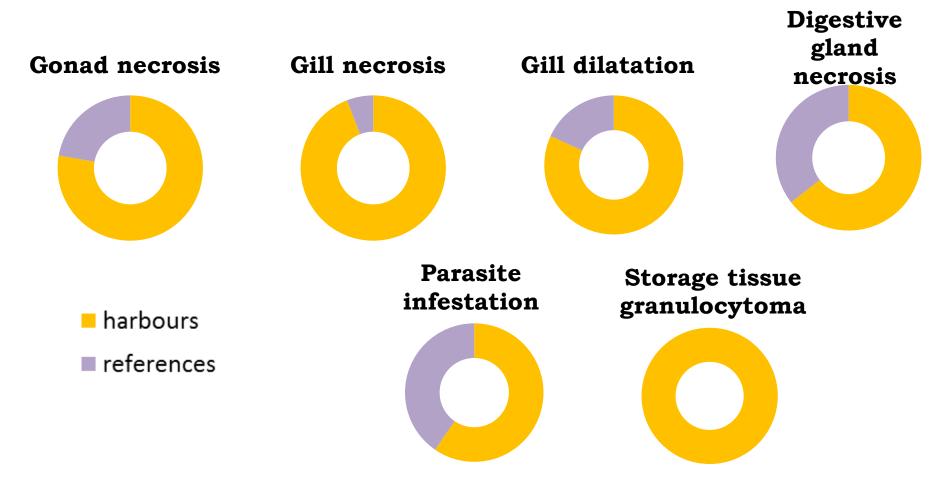
(under review)

Aims:

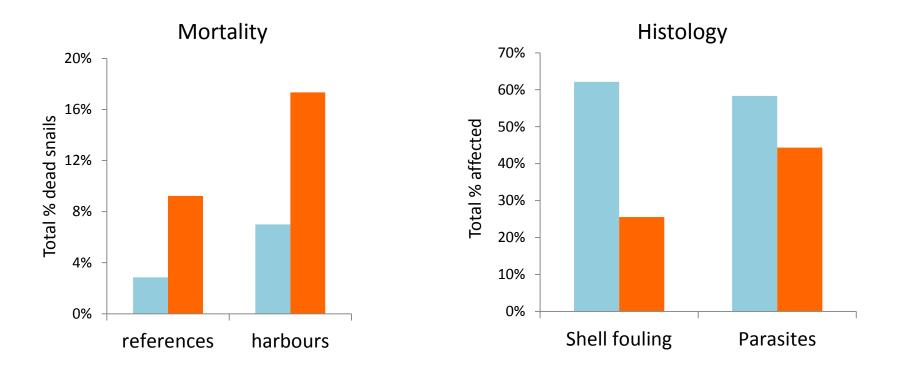
- 1. To assess histopathological effects in snails and evaluate the contribution of abiotic factors to these effects.
- 2. To assess the difference in tolerance to contaminants between snails with different exposure histories.
- 3. To evaluate the role of genetic diversity for the (potential) difference in tolerance.


Experimental setup

Snails transplanted


1 m depth, 2 months

Histopathological effects


Photos: B. Watermann

Histopathological effects

Cu and Zn were key explanatory variables.

Differences in tolerance

snails A (no exposure history)

snails B (pre-exposed)

No significant genetic differentiation

20

Based on sequencing of mtDNA, cytochrome c oxidase subunit I (COI).

Result: low genetic diversity *within* each group and no difference *between* groups.

 \rightarrow other mechanisms might be involved in the increased tolerance of snails A to contaminant stress (phenotypic plasticity?)

Conclusions

- Metals accumulate in biofouling, which ends up on the soil in boat yards at the end of season;
- A No evidence for the superior efficiency of Cu AF paints in the Baltic Sea;
- The use of AF paints is associated with chronic toxic effects on the non-target snail *T. fluviatilis:* increased mortality, reduced growth and fecundity and increased tissue pathologies.

Thank you for listening!

Acknowledgements

Supervisors: Ann-Kristin Eriksson-Wiklund Bethanie Carney Almroth Britta Eklund

Co-authors: Elena Gorokhova, Erik Ytreberg, Burkard Watermann, Lennart Lundgren, Xueli Guo

Funding: Bonus, Havs och Vatten Myndigheten

