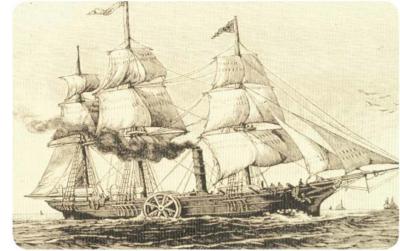

Decarbonisation Transition Pathways.

SMTF 18th September 2019



Our heritage - It started with a cup of coffee...

Lloyd's Register was set up in 1760 by customers of Edward Lloyd's coffee house in London and it maintains a happy relationship between tradition and foresight.



Our heritage - It started with a cup of coffee...

Who we are - Safety, Quality & Performance

The Lloyd's Register group is a global organisation with a mission to protect life and property and advance transportation and engineering education and research. We offer services to the marine, energy and management systems services across a wide range of sectors – focused on improving safety, quality and performance.

Lloyd's Register Foundation

Registered charity – 100% shareholder of Lloyd's Register Group Ltd

OWNERSHIP & DIRECTION FUNDING & SUPPORT

Lloyd's Register Group Limited

Our vision

Year by year we will continuously improve in helping our clients ensure supply chains are safe, responsible and sustainable. Our Values > Trustworthy > Accountable > Courageous > Open minded > Spirited

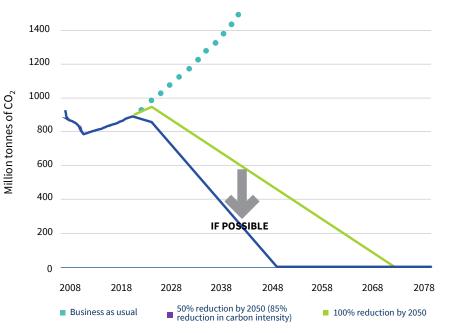
Objective.

67

To identify the potential future fuels, indicate their relevance to decarbonisation, and highlight the potential pathways to their integration in the shipping industry.

Key Messages.

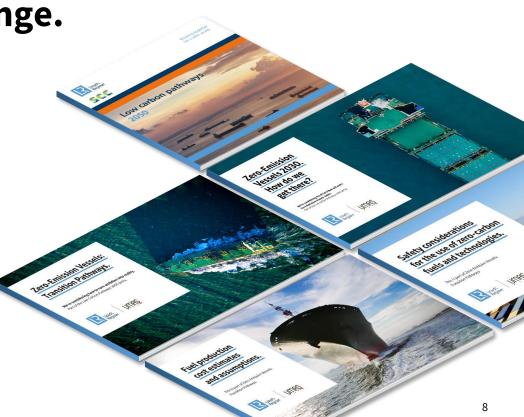
- Decarbonisation requires transition away from fossilbased fuels
- Efficiency gains and renewables energy use onboard are available now
- Research and development, pilots and prototypes are critical
- Compound knowledge by achieving small goals
- Novelty and complexity in fuels and technology



Why are zero-carbon fuels needed for full decarbonisation?

To achieve an absolute reduction in GHG of at least 50% by 2050.

- This equates to around 85% reduction in carbon intensity
- Efficiency and renewables are not enough to reach the goal
- Zero-emission vessels need to be entering the fleet from 2030


Pathways for international shipping's CO₂ emissions

ZERO-EMISSION VESSELS: THE STORY SO FAR.

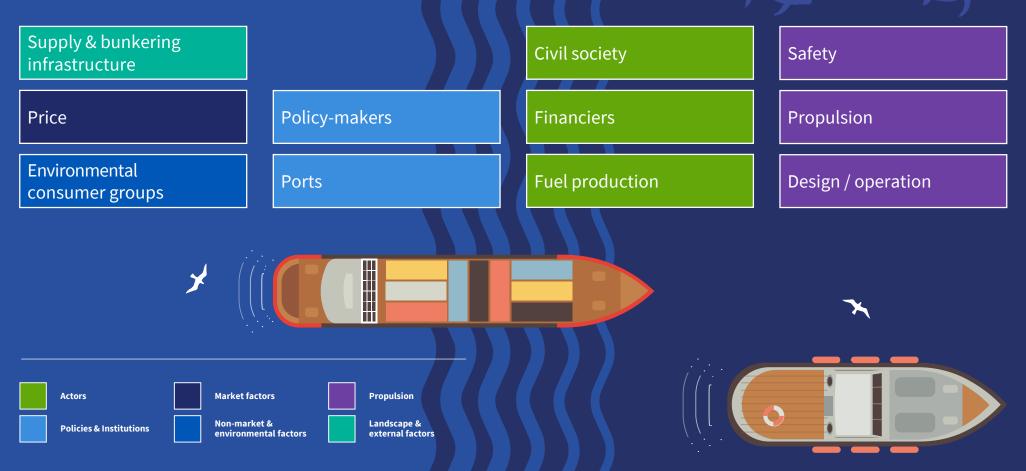
Developing new knowledge and tools to help the industry understand the complexities of the challenge.

- Low carbon pathways 2050: how might shipping be required to change?
- Zero-Emission Vessels 2030: what is the economic viability?
- Zero-Emission Vessels: Transition Pathways: What conditions are required to achieve the goal?
- Safety considerations: How do we safely use zero-carbon fuels?
- Fuel Production cost estimates & assumptions: What are the relative production costs?

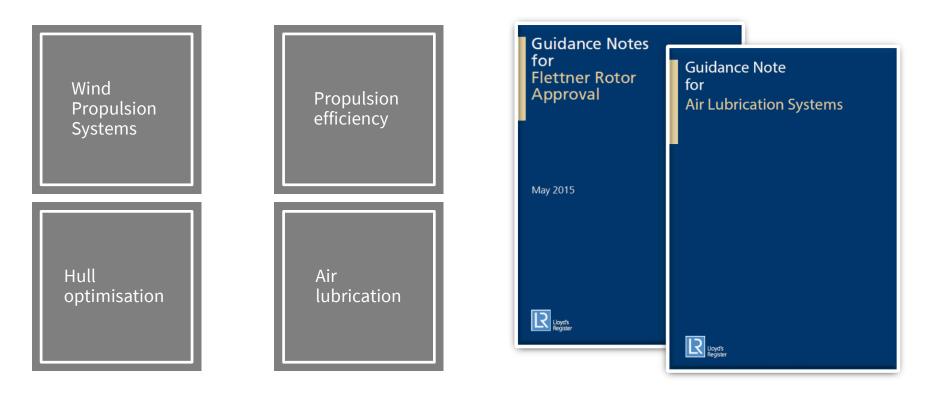
COLLABORATION. How we play our part?

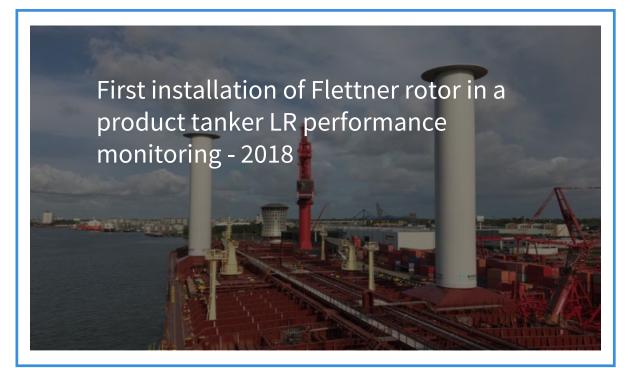
GLOBAL INDUSTRY ALLIANCE TO SUPPORT LOW CARBON SHIPPING

What do we mean by zero-carbon fuels?


Transition to zero emission vessels means phasing out fossil based fuels.

	Zero-carbon fuels					
Energy source	Methanol	Gas oil	Hydrogen	Ammonia	Electricity	
Natural gas with CCS			NG-H ₂	NG-NH ₃		
Biomass	bio-methanol	bio-gas oil				
Renewable electricity	e-methanol	e-gas oil	e-H ₂	e-NH ₃	batteries	


Fuel pathways for transitioning to zero-carbon fuels.


Fuel	Relative cost	Enabler	Limitations
Hydrogen & Ammonia produced from natural gas	Their price may vary between: 50 to 105 \$/MWh	Availability of cheap natural gas	Projected limitation of fossil- fuel and CCS energy capacity under the 1.5°C pathway
Biofuels	Their price may vary between: 25 to 95 \$/MWh	Technology known (non-complex, non-novel) Can be used as blends	Sustainability Production volume
Electro fuels	Their price may vary between: 20 to 130 \$/MWh	Flexible and distributed infrastructure Supply	Electro-fuel producers need to enter the marine market

Common elements of the three pathways.

How to integrate alternative energy generators? How to reduce the energy demand on board?

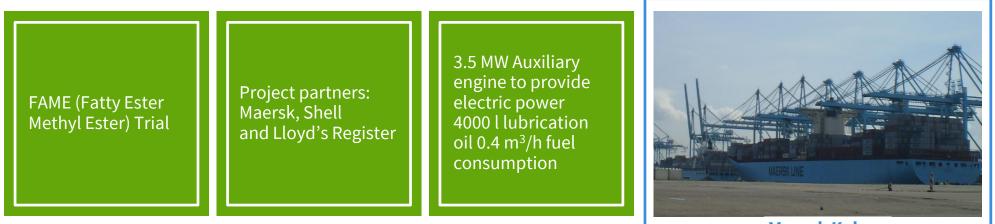
Ammonia (NH₃): fuel characteristics.

- Ammonia is a colourless, flammable, highly toxic and corrosive gas
- Flame speed is low (0.07 m/s)
- Formation of NOx during consumption
- Highly soluble in water
- Ammonia has a low flammability (15-28%)
- Latent heat of evaporation is high meaning no reliquification would be required

BIOFUELS: FUEL CHARACTERISTICS

Functionally they are equivalent to petroleum-derived fuels and compatible with existing machinery and infrastructure.

Biodiesels have a lower energy density typically 38 MJ/kg compare d to 48 MJ/kg


Can be used as blends with conventional fuels Compatibility and on-board fuel management is essential to manage any risks

Delivered biofuel project.

Project deliverables:

- Establish FAME and blend interaction with marine environment over time.
- Establish impact on Fuel delivery system and engine when used in an unmodified Engine
- Establish emission impact of FAME and blends when used in an unmodified Engine

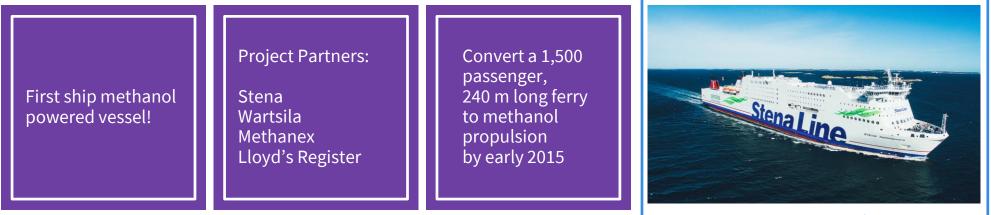
- Maersk Kalmar-

Methanol (Me-OH): Fuel characteristics.

• Not a zero-carbon fuel

CXOU

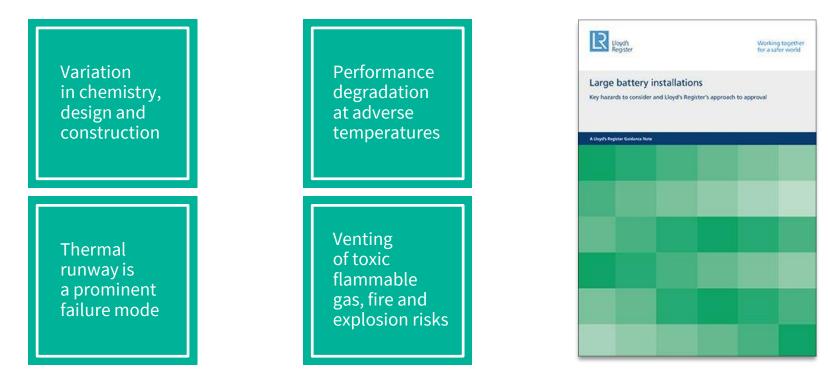
vd's Regi


- Boiling point 64.7 °C at atmospheric pressure
- It is a neutrally buoyant fuel
- Burns outside in the visible range
- Requires specialized fire detection and fire extinguishing equipment

Delivered Vessel: Methanol.

Lloyd's Register's Deliverables:

- Classification of the ship with methanol propulsion system
- Facilitation of the risk studies, controlling the risk register, and verifying recommendation closures
- Providing advice on fire fighting, witnessing sea trails, supporting client with regulators and developing the bunkering procedures.

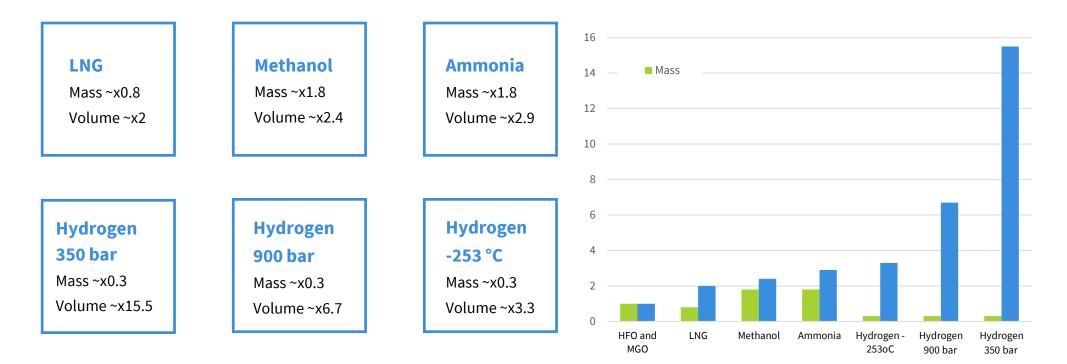

- Stena Germanica

Hydrogen (H₂): fuel characteristics.

- Zero carbon fuel
- High pressure containment (900 bar) or low temperature at -253 °C
- Wide flammability limit (04 75%) and low ignition energy (0.0011 mJ)
- High flame speed
- Permeability combined with LEL and ignition energy requires careful consideration
- High positive buoyancy ventilation arrangements
- Boiling point of oxygen is -183 °C and nitrogen −195.79 °C
- Ideal reliquification of hydrogen is ~x12 greater than that of LNG

Batteries have an important role in energy load/ demand management onboard.

Delivered hybrid Li-ion battery systems.



An Ice Class Ferry, operating on LNG, batteries & solar auxiliary power, or on diesel

Comparative energy equivalence.

IMO and Classification Policy.

Methanol

- LR Provisional Rules and Regulations
- IMO Initial Guidelines for Methanol
- Approved engines

Ammonia

- IMO not currently an agenda item
- IGC Code prohibits toxic cargo
- IGF Code: Goals, Functional Reqs.
- LR Cargo as Fuel rules (soon)

Hydrogen

- LR Guidance Notes for CH₂
- IMO not currently an agenda item
- MSC.420(97)
- IGF Code: Goals, Functional Reqs.

Li-Battery Systems

- LR Rules and Regulations, July 2019
- Li-Battery Type Approval Test Spec.

Fuel Cells

- Provisional Fuel Cell Test Spec.
- Draft Rules for Fuel Cell Systems

Hybrid Systems

• Currently under development

What next?

Local and global fuelling infrastructure

- Joint-Investment-Projects
- On board energy demand: eliminate and reduce
- Methanol, ammonia, compressed hydrogen
- Smaller goals compound to achieve the 2050 level of ambition

Compound knowledge.

Pathfinder Projects.

	Project Purpose	Deliverable	LR Contribution
Stena Germanica	Reduction in exhaust emissions	Methanol powered vessel	Classification services and risk studies
CMB Hydroville	Zero on board emissions	Compressed hydrogen fuelled vessel	Classification services and risk studies
Viareggio Super Yachts	Commercialise fuel cell and LOHC	Hydrogen fuelled vessel	Approval in Principle and risk studies
HySEAS IIII	Zero emission vessel	Fuel Cell/Battery propulsion	Classification services and risk studies
MethaShip	Achieve Methanol integration	Normalising methanol as fuel	Allocation of SME
HyMethShip	Create a Methanol fuel life cycle	Demonstrable land based system	Facilitation of project and SME
proFLASH	Develop understanding	Methanol as fuel guidelines	Guiding the investigations
EMSA Ethyl/Methyl Alcohol	Life cycle analysis of methanol	Study on benefits and challenges	Co-authored the publication
PRESLEY	Closing hydrogen knowledge gaps	Theoretical and practical research	Guiding the investigations
LEANShips	Minimise emissions	Seven demonstration projects	De-risking by using the RBD process
ISHY	Integrate hybrid and fuel cell tech.	Develop a working business model	Facilitation of project and SME
НҮДІМЕ	Create a fuel life cycle infrastructure	Hydrogen fuelled vessel	Facilitation of project and SME
ASKO Hydrogen	Zero emission transportation	Hydrogen refuelling infrastructure	Quantitative Risk Assessment
Uno-X Hydrogen	Zero emission transportation	Hydrogen refuelling infrastructure	Quantitative Risk Assessment

Presenter/contact person:

Joakim Birgander, Lloyd's Register

Manager North Europe Area Type Approval & Nordic Area QAM/MQS Scheme Business Development.

Business Development Manager for Sweden, Finland & The Baltic States Lloyd's Register EMEA

M +46 (0)708 170010 E joakim.birgander@lr.org

