FUTURE FUELS IN THE MARITIME INDUSTRY

SMTF – 02 NOV 2022

ALTAMARIN

Who am I? - Tommy Hjälmås BSc.Mar.E.

- 30+ years in maritime industry
- 15 years with gas vessels (Navigator Gas / Dorchester Maritime (Bernard Schulte GmBH)
- JnJ Survey AB 2018 →
- IGF code examinator at Chalmers University, Sweden \rightarrow
- Consultant for various local and international companies from time to time ightarrow

Gymnasium 1985-1987

At Sea 1990-1994

Superintendent 1994-2002

Fleet Manager 2002-2006

Chief Operating Officer Director – Newbuilds and special projects 2006-2018

University 1987-1990

Future fuels "and other things..."

World Wide - Trade

Global Seaborne Trade, billion tonnes

. 0

Seaborne Trade - Emissions

Ships emissions = 850-900 million tonnes of CO₂ per year.

700 tonnes CO2 every second, every day around the clock!

Rules / Regulations - History

•	"Titanic"	1912
•	"Torrey Canyon"	1967
•	"Amoco Cadiz"	1978
•	"Herald of Free Enterprise"	1987
•	"Exxon Valdez"	1989
•	"Scandinavian Star"	1990
•	"Estonia"	1994
•	"Sea Empress"	1996
•	"Erika"	1999
•	"Sept 11"	2001
•	"Prestige"	2002
•	"Costa Concordia"	2013

"Titanic" 1912	\rightarrow
"Torrey Canyon" 1967	\rightarrow
"Herald of Free Enterprise" 1987	\rightarrow
"11 Sept 2001 gave ISPS"	\rightarrow

life's tonnes oil life's tonnes oil life's life's tonnes oil tonnes oil life's tonnes oil life's

1,517

193

159

852

40,000

36,000

70,000

30,000

78,000

32

2,966

220,000

SOLAS The International Convent on Life at Sea 1914 MARPOL/STWC The International Convention for the Prevention of Pollution from Ships. ISM The International Safety Management Code The International Ship & Shore Facility Security Code

EEDI / EEXI

Result table based on 2020 operational figures and unchanged operation over time.

	· · ·		<u> </u>			· ·				-			
NAME	IMO Nº	GT	CO2	distance	CgDIST	2023	2024	2025	2026	2027	2028	2029	2030
MECKLENBURG-VORPOMMERN	NA	37987	35167,014	80502,98	11,5	В	В	В	В	В	В	C	C
SKANE	NA	42705	38975,559	83834,1	10,9	В	В	В	В	В	В	С	C
STENA ADVENTURER	NA	43532	57326,977	78577,63	16,8	D	D	D	D	D	D	E	E
STENA Baltica	NA	22308	29061,279	73879,78	17,6	8	B	С	С	С	С	С	С
STENA BRITANNICA	NA	64039	67593,375	73873,01	14,3	D	D	D	E	E	E	E	E
STENA DANICA	NA	29289	24193,009	47773,09	17,3	С	С	С	С	C	D	D	D
STENA EDDA	NA	41671	41262,866	82172,98	12,1	в	В	С	с	C	С	С	C
STENA ESTRID	NA	41671	42544,021	72147,98	14,2	С	с	с	С	С	D	D	D
STENA Europe	NA	24828	26478,514	67472,25	15,8	8	В	В	в	C	C	C	C
STENA Flavia	NA	26904	39316,707	93636,66	15,6	8	В	C	С	C	С	C	C
STENA GERMANICA	NA	51837	39358,119	78407,76	9,7	В	В	В	В	В	В	C	C
STENA GOTHICA	NA	13294	22779,63	95884,63	17,9	A	A	А	Α	В	В	B	В
STENA HOLLANDICA	NA	64039	60571,8	74014,43	12,8	D	D	D	D	D	D	D	E
STENA HORIZON	NA	27522	42513,454	\$4143,63	18,4	С	C	С	С	D	D	D	D
STENA JUTLANDICA	NA	29691	37381,39	77928,17	16,2	С	С	С	С	С	С	C	D
STENA Lagan	NA	27510	14036,592	24772,58	20,6	D	D	D	D	D	D	D	D
STENA Mersey	NA	27510	43594,446	91139,35	17,4	С	С	С	С	C	С	D	D
STENA NAUTICA	NA	19504	21335,421	74589,03	14,7	Α	Α	A	В	В	В	B	В
STENA Nordica	NA	24206	30952,619	54188,25	23,6	D	D	D	D	D	D	E	E
STENA SCANDINAVICA	NA	58084	48180,056	\$2056,87	10,1	8	с	с	с	С	С	С	С
STENA SPIRIT	NA	39193	55416,708	106825,72	13,2	С	с	с	с	С	с	С	С
STENA Superfast VII	NA	30285	46186,042	70488,14	21,6	D	D	D	D	E	E	E	E
STENA Superfast VIII	NA	30285	46254,302	69207,02	22,1	D	D	D	D	E	E	E	E
STENA TRANSIT	NA	33690	32280,364	67174,52	14,3	С	C	С	С	C	С	C	C
STENA TRANSPORTER	NA	33690	33875,115	67158,38	15,0	С	С	С	С	C	C	C	D
STENA VINGA	NA	14551	13740,899	49374,63	19,1	В	В	В	В	В	В	B	В
STENA VISION	NA	39191	52344,88	102116,85	13,1	С	С	С	С	С	С	С	С
Und	NA	13144	23411,448	99224,13	18,0	A	A	A	A	В	В	8	B

New regulations - Environment

Global Warming Potential (GWP)

- CO₂, by definition, has a GWP of 1 regardless of the time period used, because it is the gas being used as the reference. CO₂ remains in the climate system for a very long time: CO₂ emissions cause increases in atmospheric concentrations of CO₂ that will last thousands of years.
- Methane (CH₄) is estimated to have a GWP of 28–36 over 100 years. CH₄ emitted today lasts about a decade on average, which is much less time than CO₂. But CH₄ also absorbs much more energy than CO₂. The net effect of the shorter lifetime and higher energy absorption is reflected in the GWP. The CH₄ GWP also accounts for some indirect effects, such as the fact that CH₄ is a precursor to ozone, and ozone is itself a GHG.
- Nitrous Oxide (N₂O) NOx has a GWP 265–298 times that of CO₂ for a 100year timescale. N₂O emitted today remains in the atmosphere for more than 100 years, on average.
- Chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) are sometimes called high-GWP gases because, for a given amount of mass, they trap substantially more heat than CO₂. (The GWPs for these gases can be in the tens of thousands.)

Ç		GWP values for 100-year time horizon						
Industrial designation or common name	Chemical formula	Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)				
Carbon dioxide	CO ₂	1	1	1				
Methane	CH4	21	25	28				
Nitrous oxide	N ₂ O	310	298	265				
Substances controlle	ed by the Montreal P	Protocol						
CFC-11	CCI ₃ F	3,800	4,750	4,660				
CFC-12	CCI ₂ F ₂	8,100	10,900	10,200				
CFC-13	CCIF ₃		14,400	13,900				
CFC-113	CCI ₂ FCCIF ₂	4,800	6,130	5,820				
CFC-114	CCIF ₂ CCIF ₂		10,000	8,590				
CFC-115	CCIF ₂ CF ₃		7,370	7,670				
Halon-1301	CBrF ₃	5,400	7,140	6,290				
Halon-1211	CBrCIF ₂		1,890	1,750				
Halon-2402	CBrF ₂ CBrF ₂		1,640	1,470				
Carbon tetrachloride	CCI4	1,400	1,400	1,730				
Methyl bromide	CH ₃ Br		5	2				
Methyl chloroform	CH ₃ CCI ₃	100	146	160				

Global warming potential (GWP) values relative to CO₂

Future fuels – World fleet

World wide seaborne trade

Global Seaborne Trade, billion tonnes

ALTAMARINE

World Wide - Fleet

Total Elect	Numbers, end:						m.	Forecast				
Ioidi Fieei	2018	2019	2020	2021	Aug*	2018	2019	2020	2021	Aug*	2022	2023
TOTAL CARGO FLEET	60,832	61,784	62,572	63,382	64,045	1,237.7	1,290.2	1,330.1	1,374.0	1,402.4	1,414.1	1,442.9
% change	1.1%	1.6%	1.3%	1.3%	1.0%	3.1%	4.2%	3.1%	3.3%	2.1%	2.9 %	2.0%
GLOBAL TOTAL FLEET	98,523	100,191	101,463	102,944	103,883	1,347.5	1,401.3	1,441.2	1,487.4	1,517.0	1,530.9	1,563.1
% change	1.3%	1.7%	1.3%	1.5%	0.9%	3.0%	4.0%	2.8%	3.2%	2.0%	2.9 %	2.1%

In 2021, global newbuild contracting reached its highest tonnage levels since 2013, supported by all time high containership orders.

Source: Clarkson's Research

. 0

Ships in the world - ALL!

82,480 >100 GT and LOA >30 m (103,925) - In Service. 3,980 >100 GT and LOA >30 m (4,545) - On Order

4,214 Chemical Carriers (incl. <u>168</u> on order where <u>19</u> are LNG fuelled + <u>4</u> MEOH.) **1,709** LPG carriers (includes <u>156</u> on order where <u>99</u> are LPG fuelled)

- 838 Car carriers (incl. 82 on order, <u>82</u> alt. fuelled (LNG))
- 550 Cruise ships (incl. 74 on order, <u>27</u> alt. fuelled (LNG) + <u>8</u> other)

Orders for alternative fuel capable units this year reached 341 ships of 27.1m GT as of start September, representing 59% of GT ordered. This includes 272 units set to be LNG capable and 15 methanol capable units ordered in 2022 so far (following orders for 19 units in 2021).

Orderbook - *Alternative Fuelled ships (Excl LNG cargo vessels)!*

Fuel Type	In Service	Total Orderbook				
LNG (CH4)	317 / 325	493 / 501				
ALTERN. FUEL (TOT)	<u>142</u>	<u>159</u>				
METHANOL (CH3-OH)	19	42				
LPG (C3/C4)	61	99				
ETHANE (C2H6)	18	12				
Ammonia (NH3)	0	0 (1)				
Hydrogen (H2)	0	3-9				

LNG as fuel – Fleet, In Service

- 1

ALTAMARINE

LNG Fueled Fleet

LNG Fueled Fleet, excl. LNG Carriers

LNG as fuel – Fleet, On Order

792 ships

Orderbook by Ship Type

Gas Carrier (non LNG)
Container Ship
Ro-Ro/Con-Ro
Car Carrier
Tanker
Bulk Carrier
General Cargo
PSV/OSV
Harbour Vessel
Car/Passenger Ferry
Cruise Ship
Icebreaker
Dredger

- Seagas (170 m3) AGA
- Coralius: (5,800 m3) A.V / Sirius AB
- Engie Zeebrugge (5,100 m3) Nippon / NYK
- Kairos (7,500 m3) BS / LGE
- Cardissa (6,500 m3) Shell
- NB x **27** (4,000 28,000 m3)

LNG bunker Ships

Name 🔫	Туре 🔫	Status 🔫	Contract Date 🛛 🖛	Built Date 🛛 😁	Capacity (cu m) 📑	Dwt 😁	LOA (m) 🖛	Builder 🗧	Owner -	Operator 🔫
N/B EK Heavy Industries	LNG Bunkering Vessel	On Order	01-Feb-2020	01-Jan-2022	500	300		EK Heavy Industries	S Korea Fisheries	
N/B Hyundai Mipo Ulsan 8298	LNG Bunkering Vessel	On Order	18-Nov-2019	01-Jan-2022	18,000	15,000	166.00	Hyundai Mipo	Korea Line	Shell Western LNG
N/B Hudong Zhonghua Shanghai H1870A	LNG Bunkering Vessel	On Order	03-Dec-2019	01-Nov-2021	18,600	15,000	135.00	Hudong Zhonghua	Mitsui OSK Lines	Total
N/B Nantong CIMC SOE	LNG Carrier	On Order	12-Apr-2019	01-Aug-2021	7,500	7,000	116.00	CIMC SOE	Avenir LNG	
N/B Nantong CIMC SOE	LNG Carrier	On Order	12-Apr-2019	01-May-2021	7,500	7,000	116.00	CIMC SOE	Avenir LNG	
N/B CIMC SOE Nantong S1044	LNG Carrier	On Order	31-Jan-2019	01-Mar-2021	20,000	12,000	159.70	CIMC SOE	Avenir LNG	
N/B Sembcorp Boulevard Singapore J420004	LNG Bunkering Vessel	On Order	25-Feb-2019	01-Feb-2021	12,000	10,000	112.00	Sembcorp Boulevard	Mitsui OSK Lines	Pavilion Gas
Ecobunker Tokyo Bay	LNG & Oil Bunkering Vessel	On Order	26-Feb-2019	01-Jan-2021	2,500	5,000	95.57	JMU Isogo Works	Ecobunker Shipping	
N/B CIMC SOE Nantong S1043	LNG Carrier	On Order	31-Jan-2019	01-Jan-2021	20,000	12,000	159.70	CIMC SOE	Avenir LNG	
N/B Damen Yichang Yichang 559014	LNG Bunkering Vessel	On Order	02-Oct-2018	01-Jan-2021	6,000	3,300	99.80	Damen Yichang	Infortar	Eesti Gaas
N/B Keppel Nantong Nantong H414	LNG Bunkering Vessel	On Order	26-Dec-2018	01-Dec-2020	5,800	5,000		Keppel Nantong	Shturman Koshelev	Gazpromneft Marine
N/B Dalian Shipbuilding Dalian G8500-1	LNG Bunkering Vessel	On Order	18-Oct-2018	01-Oct-2020	8,500	7,500	119.30	Dalian Shipbuilding	Xinao Energy	
FueLNG Bellina	LNG Bunkering Vessel	On Order	05-Jun-2018	01-Oct-2020	7,500	6,500		Keppel Nantong	FueLNG	FueLNG
N/B Keppel Nantong Nantong H401/H056	LNG Carrier	On Order	24-May-2017	01-Oct-2020	7,500	7,000		Keppel Nantong	Avenir LNG	Hygo Energy
Kaguya	LNG Bunkering Vessel	On Order	06-Jul-2018	01-Sep-2020	3,500	2,500	81.70	Kawasaki HI Sakaide	Central LNG Shipping	
Avenir Advantage	LNG Carrier	On Order	24-May-2017	01-Sep-2020	7,500	7,000		Keppel Nantong	Avenir LNG	Petronas
Gas Agility	LNG Bunkering Vessel	In Service	06-Feb-2018	01-Apr-2020	18,600	9,457	135.50	SCS Shipbuilding	Mitsui OSK Lines	Total
SM Jeju LNG2	LNG Carrier	In Service	05-May-2017	01-Jan-2020	7,654	5,752	96.96	Samsung HI	Korea Line	KOGAS
CNTIC VPower Global	LNG Carrier	In Service	05-Apr-2013	01-Jan-2020	28,689	15,996	176.80	COSCO HI (Dalian)	CNTIC VPower	CNTIC VPower
SM Jeju LNG1	LNG Carrier	In Service	05-May-2017	01-Sep-2019	7,654	5,857	96.96	Samsung HI	Korea Line	KOGAS
Kairos	LNG Bunkering Vessel	In Service	30-Nov-2016	01-Oct-2018	7,500	4,376	117.00	Hyundai Mipo	Schulte Group	Nauticor
Coral Energice	LNG Carrier	In Service	26-Jun-2015	01-Jan-2018	18,000	9,125	163.86	Neptun Werft	Anthony Veder	Anthony Veder
Coralius	LNG Bunkering Vessel	In Service	14-Jan-2015	01-Aug-2017	5,737	3,163	99.60	Royal Bodewes SY	Anthony Veder	Sirius Shipping
Cardissa	LNG Bunkering Vessel	In Service	04-Dec-2014	01-Jun-2017	6,469	5,320	119.94	STX SB (Jinhae)	Shell Western LNG	Shell Western LNG
Engie Zeebrugge	LNG Bunkering Vessel	In Service	30-Jun-2014	01-Feb-2017	5,100	3,121	107.60	HHIC (Yeongdo)	Nippon Yusen Kaisha	Nippon Yusen Kaisha
Hua Xiang 8	LNG Carrier	Dedicated Storage	01-Mar-2014	01-Dec-2016	14,000	9,094	125.80	Fengshun Ship Hvy	Zhejiang Huaxiang	
Coral Energy	LNG Carrier	In Service	25-Jan-2011	01-Dec-2012	15,600	12,268	155.64	Neptun Werft	Anthony Veder	Anthony Veder
Pioneer Knutsen	LNG Carrier	In Service	03-May-2002	01-Feb-2004	1,100	817	69.00	Veka SY Lemmer	Knutsen OAS Shipping	Knutsen OAS Shipping

ALTAMARINI

What options are there?

Emission (CO2) / power (kWh)

Fuel	Liquid density	Specific carbon content	Spec Energy o	Specific Energy content		ific CO ₂ emis	sion	Specific CO ₂ emission			
Fuei	kg/l	kg _C /kg _{fuel}	kWh/kg _{fuel}	Btu/Ib _{fuel}	Kg _{co2} /kg _{fuel}	Kg _{co2} /gal _{fuel}	lb _{co2} /gal _{fuel}	kg _{co2} /kWh	kg _{co2} /GJ	lb _{co2} /mill Bt	
Methane (natural gas)		0.75	15.4	23900	2.75			0.18	50	115	
Propane	0.510	0.82	13.8	21300	2.99	5.78	12.7	0.22	60	140	
Butane	0.564	0.83	13.6	21100	3.03	6.47	14.3	0.22	62	144	
LPG (wt of C3=C4)	0.537	0.82	13.7	21200	3.01	6.12	13.5	0.22	61	142	
Gasoline	0.737	0.90	12.9	19900	3.30	9.20	20.3	0.26	71	165.3	
Kerosene (Jet)	0.821	0.82	12.0	18500	3.00	9.33	20.6	0.25	70	162.5	
Diesel	0.846	0.86	12.7	19605	3.15	10.1	22.3	0.25	69	160.8	
Heavy fuel oil (No.6/Bunker C)	0.980	0.85	11.6	18000	3.11	11.6	25.5	0.27	75	173.3	
Petroleum coke		0.89	9.4	14500	3.26	14.7	32.4	0.35	97	225.1	
Coal:										227.3	
Anthracite		0.92	9.0	14000	3.37			0.37	104	229.5	
Bituminous		0.65	8.4	13000	2.38			0.28	79	231.7	
Subbituminous		0.4	6.8	10500	1.47			0.22	60	233.9	
Lignite		0.3	3.9	6000	1.10			0.28	79	236.1	
Coke		0.77	7.2	11200	2.82			0.39	108	251.5	
Peat (dry) ¹⁾		0.52	4.7	7300	1.91			0.40	112	260.7	
Ethanol fuel (E100) ²⁾	0.789	0.52	8.3	12800	1.91	5.71	12.6	0.23	64	149.6	
Methanol fuel (M100) ²⁾	0.791	0.37	5.5	8500	1.37	4.11	9.1	0.25	70	162.2	
Biodiesel (B100) ²⁾	0.880	0.78	11.3	17400	2.85	9.48	20.9	0.25	70	162.8	
Wood ^{1) 2)}		0.50	4.5	7000	1.83			0.41	113	263.1	
Bio energy 2)								0 2)	J		

1 tonne of MDO = 3.11 tonnes of CO2

-0

1 tonne of LNG = 2.75 tonnes of CO2

(3.15 – 2,75) / 3.11 = 12,7 % reduction of CO2 emissions

+ LNG has 20 % more energy per kg

So the NET reduction of CO2 emissions should be 25-30 % or ??

Bunker prices 2016 - 2022

Master Gas Valve - LNG

Master Gas Valve – This is it!

SSD HVK H6505 650614 BAF18 (810)MASTER GAS FUEL VALVE

Digitalisation – What is coming?

Tommy Hjälmås Mob: +46 (0)709199777 E-mail: <u>tommy.hjalmas@altamarine.eu</u>

ALTAMARINE